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EVALUATING THE HELMHOLTZ INTEGRAL:
PART 1 - BASIC THEORY

1. INTRODUCTION

The research described in this report was motivated by the problem of computing
the electromagnetic field scattered by a large number of metallic reflectors. This prob-
lem arises in the sturdy of the proposed new doppler Microwave Landing System, and
our main concern is to determine the effects of multiple scatterings between the scat-
tering objects. As a first approximation to a solution of this problem it will be assumed
that the collection of reflectors consists mainly of flat metallic plates of arbitrary shape,
and the Kirchhoff theory of diffraction will be used to estimate the fields scattered by
the plates.

In the Kirchhoff theory of diffraction, the field scattered by a surface is represented
by a Helmholtz integral, which is a rather complicated surface (double) integral evaluated
over thp s1rfacep snd in S 9r 9 wp dhnl] nrpepnt soimp new rnciiltc chnwinc hnw the HT-nm-
holtz integral has a closed form representation as a line integral evaluated over the boun-
dary of the reflecting surface.

In the standard far-field approximation to the Kirchhoff theory we can even do
more: If the reflecting surface is bounded by straight lines, then the far-field approxi-
mation can be reduced to the sum of a number of terms 3Jn, each term Jn being merely
a certain complex quantity evaluated at the nth vertex of the reflector. In other words,
for flat polygonal reflectors the usual far-field approximation reduces to a form which
requlirpe nn intaarnfinnc nf al nnud henca ic artrmaliy al-+rwa+ca from +hn ofon"npnin+ nf
economy of calculation. These results will be presented in Sec. 4.

The results of Sec. 2 might also be applied to obtain closed form expressions for
the "exact" Helmholtz integral (rather than the far-field approximation) which involve
no integrations. This possibility will be the subject of future investigations.

Throughout this report it will be assumed that the radiation incident on each reflec-
tor is either a plane wave or a spherical wave; however, our methods generalize to other
types of incident radiaton, and Only require that fumn ,-A"Jf.-alin na.fnA. th wave ebio.
and that the scattering objects be finitely extended.

2. REDUCTION OF THE HELMHOLTZ INTEGRAL TO A LINE INTEGRAL

Notation and Definitions

S is an open surface in euclidean 3-space which, physically, will correspond to a
metallic reflector or an aperture in an opaque screen. Unless otherwise stipulated, it
will always be assumed that S is finite in extent.
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MS - boundary of S

unit normal to S, and 3S is always oriented so that a point moving in a Pos-
tive direction around 3S appears to move in a counterclockwise direction when 'j7 is point-
ing towards the observer.

The Helmholtz integral is given by the fight-hand side of the relation

4irup = f {ugradH-Hg radnu} - idA (2.1)

where up is the (purported) value of the scattered field at a fixed "field point" P, and
H = jexp(ihr)fIJr where k = 2ir/X is the wave number and where rt is the vector drawn from
P to a variable point in space.

Let 1 be a unit vector, which in our applications will correspond to the direction in
which a wave front is moving as it passes the field point P and let R be the axis which
passes through P and is parallel to t. Let sp be the angular coordinate which corresponds
to a rotation around Q. so that if a special xvz coordinate system is chosen with4
we have

dp =(xdy - ydx)j(x2 + y2 J (2.2)

Equivalently, if F is a function, the line integral 3'Fc can be written

faW4 = fasF t2 t (2.3)

where -r = At) is any parametric representation of as. Then we shall say that P is an
I-point, a B-point or an S-point according as BS winds around V, £ intersects 38, or Q falls
an+rsAn 0t aQ Isee W;tn . I \ s 41-. -A ;^+} +ta- D I- nr dn; 4..a .s 0+

'JtblA in U k ± I£5- .t-J nnatujy LI VLJ A V t')14 vI't ll'J 4 -J~ t4.I IQJ'tl 1 4

fAo= ±wr (the sign depending on the orientation of M3), and the condition that P be

an S-point is f dso = 0. If P is a B-point, the form dk is indetertinate. Physically,
as as

the sets of I-points, B-Points, and S-points correspond (respectively) to the geometrical
optics illuminated zone, shadow boundary zone, and shadow zone as they are predicted
by the Kirchhoff method. (See Sec. 3 for further discussion.)
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Preliminary Remarks

Since the reduction of a surface integral to a line integral is in one sense trivial, we
shall interrupt our presentation at this point to discuss what is at issue here.

From Stokes' (or Green's) Theorem we have

r ndr +ad~rv = r ($- 2q _ d
JAS - - ` is \dX (x dy/)

Hence in order to reduce a surface integral f fdxdy to a line integral, we only have to
solve the equation S

aq _ ap = f
ax ay

(*)

for p and q. Such a solution is always possible provided only that S be simply connected.
For example, if S is convex, we can set p = 0, so that we only have to obtain q by inte-
grating aq/ax = f3 (If S is not convex, there is a difficulty in defining the limits of inte-
gration.) Hoyever, such a procedure is unsatisfactory from two points of view: For the
purposes of connputation we have ncco.mplshed nothing, since one initeat on is reqtued

to solve (*), and a second integration is required to evaluate the line integral. In other
words, all we have done is to express the surface integral as an iterated double integral.
Also, from the standpoint of theory we have gained nothing since none of the infinite
number of solutions to (*) appear to have any geometric or physical content.

What we want therefore is a representation of the Helmholtz integral as a line inte-
gral which is in closed form, i.e., a representation as a line integral 3a Fdso in which the

a



WILL1AM B. GORDON

integrand F does not depend on S and which is valid for any member of a lass of in-
dent radiation which is given explicitly in a functional formr u = ug t1, ..., tn) involving
a finite number of parameters t1, ... , tn.

Statement of Results for the Plane and Spherical Wave Case

The following propositions will illustrate results of the kind indicated. We should
emphasize that the relatioqs (2.4) and (2.5) are derived by purely mathematical pro-
cesses, involve no approximations, and hence are perfectly exact.

Proposition 1. (Plane Wave Case). Let all vectors and angles be as shown in Fig. 2, and
let u(r) = exp (ikrt.

S

Cos a r '-f/r

eos ga- r *. Vr

-a- 4

XY

-- aX

F.t. 2 - Pane wave case

Then

' {u grad f - H grad u -* sdA = c - fa (1 - cos O) expjikr(1+cos O)Jd

where c - {O if P is an S-point 4
4 r if P is an I-point.

4
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Proposition 2. (Spherical Wave Case). Let all vectors and angles be as is shown in Fig. 3,
and let PO be the source of a spherical wave u(r,) = (1/ro) exp (ikro) where rO is the vector
drawn from PO to a variable point in space.

¶7 r

S

Cos Bo B to I elro

coo B = - r 7 ;ar

Fig. 3 - Spherical wave case

Then

f eR grad -Hgradu} iid4 1c-f [1-cos(O-O)]jexp[ik1r0+r-R)]d~p
weu eredc -Horaasdbefore. as d

where c = 0 or 4n as before.
(2.5)

Remark - In Proposition 1 the "incident" field u is always normalized so that the
phase is zero at the field point. To obtain a result which preserves the proper phase rela-
tions as the field point P is varied one should multiply the right-hand side of (2.4) by
exp (ikR -) where for each field point P, R is the position vector of P drawn from some
fixed origin.

5
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3. GENERAL DISCUSSION

The derivations of formulas (2.4) and (2.5), together with a discussion of their physi-
cal significance, is given in Ref. 1, and the results of detailed numerical calculations will
be given in subsequent reports. In this section we shall discuss how these formulas are to
be used in scattering problems.

A. As they stand, the formulas are immediately applicable to the case where S is an
aperture in an opaque screen. The Kirchhoff method consists in setting each component
u of the incident field in the left-hand side of (2.4) and (2.5) equal to the value

value of unperturbed field for x in S
(x) I

0 for x in planar set complementary to S.

The case of flat planar reflectors is treated in the same way, with S being regarded as an
aperture, except that, in the plane wave case, the incident ray t is replaced by the reflected
ray

= 6 >tE n7n; (3.1)

while in the spherical wave case, the source P0 is replaced with its "image" source located
symmetrically on the opposite side of the plane. More generally, for the case of curved
rTefletorst S is taken to he a certain suhdormain (detormined bhy veomeirial noptics) of a

plane approximating an emerging wave front.

B. We shall now justify the use of our I-, S-, and B-point terminology. If S is a plane
surface, then, from geometry, our I, S, and B zones obviously correspond to the geometric
optics illuminated, shadow, and shadow, and shadow boundary zones, respectively.
Suppose now that S is curved. Then our terminology is still justified because our I and S
zones correspond to the geometric optics field as it is predicted by the Kirehhoff method,
The reason for this is that the line integrals in (2.4) and (2.5) converge to zero as k-A

Then the only way in which the line integral could fail to converge to zero as k-0 is if
the quantity r(Alcos 0) remained constant over some nonzero segment of as. (This
happens, for example, when one computed the field along the axis of a disc in the case
when t is normal to the disc.)

C. Although the line integrals in (2.4) and (2.5) appear to be very well suited for the
purposes of machine calculation, one cannot expect to be able to obtain dosed form ex-
pressions for these integrals except in the simplest cases. However, one can apply the
rnipiLe of Statinlary Pnase to oUUbUn Closed Lorm expressiulis for the line integral whic
are asymptotically valid as k -+ o. In applying this method one should take care to express
all variables (including ip) in terms of a parameter t with the property that every t-value
corresponds to only one point of aS. The parameters r, 8, and p do not have this property
at S-points.

6
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From the standpoint of theory the Principle of Stationary Phase is interesting because
it is suggestive of Fermat's Principle and J. B. Keler's feometrin Theorv of Diffraction
[2-4]. Consider, for example, the spherical wave case (2.5), and recall that R is constant
(since P0 and P are fixed during the integration). Then according to this principle an
asymptotically valid expression is obtained which contains only a finite number of terms,
each term corresponding to a value of t for which ro + r = r0 (t) + r(t) is stationary.
There exist at least two such terms, corresponding to points on aS at which r0 + r attains
its minimum and maximum values.

Recall that in the case of flat plate reflectors (cf. (A) above) the source point P0 is
actually the "i.nage" source. From lr i n; nemrlk it is e asily seen that the c term in (9 Ei
corresponds to the specular component of reflection.

The plane wave case is entirely similar. Let r = PQ, where Q is a variable point on
as. Then r(l+cos 0) = -a + r + distance from Q to a fixed but arbitrary wave front below
S, where a is a constant (dependent on the wave front selected).

Both geometrical optics effects and edge effects contained in the Helmholtz integral
have been previously observed. Keller [4] obtained similar results by applying the two-
dimensional Principle of Stationary Phase to the double integral (2.1).

D. The formulas (2.4) and (2.5) are defintely not valid when S is infinitely extended.
The reason for this appears to be that the derivation of these formulas requires repeated
application of Stokes' Theorem, which is only valid on finitely extended surfaces. In
particular, in the case of the infinite half-plane, the integrals converge but yield incorrect
results.

A .',.lnA flrTfl fl A flllr'r A mTC1NT4i. Ti FAlL ia-rILLi) nrauAuv "I!LIN

This section is concerned with the far-field approximation to the field scattered by
a flat plate whose boundary consists of straight-line segments. It will be shown how the
standard far-field approximation reduces to a form which does not involve any integra-
tions. The derivation given below is independent of the results of Sec. 2, and only
involves the use of Stokes' Theorem and the Divergence Theorem.

The formulas given below apply to the case when S is an aperture in an opaque
screen. To obtain corresponding results for tne case when S is a reflector, one must
reflect the incident field ray t as is indicated in Eq. (3.1).

We consider a (scalar) plane wave u of unit field strength incident on a plane
aperture S. The first thing we wish to establish is that there is no loss of aeneralitv in
assuming that the phase illumination is constant on S. For if t is not normal to S we
can apply the Helmholtz formula (2.1) to the surface S' which is the surface obtained
by projecting S onto a plane perpendicular to f, keeping a vertex of S fixed.

7
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Proof. Since div ju grad H - H grad u} 0, we have (Divergence Theorem)

{-f Jf S IfJ 3grad -= H rad u) dA = O

where 8" is the surface which consists of those "sides" which, together with S and S,
form a closed surface b0. The minus sign appears only in the first term because the
normal -q points outward at S' and 8" aind inward to S. at S.

But f 0 since the sides of S" are parallel to T.
S

Hence f -f
S Se

We now assume that the incident radiation has unit strength and constant phase
illumination on the plane aperture S.

Let x1, x2 , xs be standard rectangular coordinates, and let S lie in the xjx2 plane.
Let B, 0, fp be spherical coordinates, with

x 1 = R sin cos7

x2 - R sin 0 sin ip

X3 = R Cos 0.

If the origin of these coordinate systems is made to lie in the interior of S, then the
standard far-field approximation for u4P) is given by

041l + Cos O)eikR ( f4.1)u(P) = - I e- " dx1 dx2
4iR S

where

x= fxi, X2]
(4.1a)

j LV1. , V2 ] I S os CUS PS-11-14 1 SirlY J1#

(cf. Ref. 5, p. 173. Some authors commonly write -i where we write -i.)

The main point of our derivation is contained in the following lemma.

Lemma. Let Wi [W, w2] be a constant vector. Then

f! C dx1 dx2 - f e"`- (W24X1 - W1dx2 ). {4.2
S I 12 aS

8
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Proof. Apply Stokes' Theorem (or Green's Theorem) to the right-hand side of (4.2).

We now apply (4.2) to (4.1), with w = -k1. Let x = x(t) be any parametric repre-
sentation of aS. We get

1 + cos0 -eiR

-(P= sin 0 4R as

where

yi,* dx e -f -e Ve -Tt dt

(4.3)
e = [cos tp, sin pj

e =[sin tp, -cos sol].

Remark. If 0 = 0, then from (4.1) we get

_ike'kR
u (P)- -- A

where A = area of S.

Finally, we want to reduce the right-hand side of (4.3) to a form which does not
involve any integr as. Let S be a plane nnplcrnn with N uvrtics A_, *.., -N, each vertex

an being a 2-vector in the x1x2 plane. Set CN+1 = -l, and let Aa, = a + - an. Then
for sin 0 * 0, we have

1+ cos ei'R
U (P) = - . - (J4 +...+ JQN)(

sin 0 4ff B

where, for 1 < n < N,

* =( sin exp F -i(k sill 0) (e t -2-)
Proof. We have to show that the expression for Jn in (4.4) is the contribution of the
nth side of the polygon S to the integral in (4.3).

A parametric representation of the nth side of S is given by

X(t) = (1-tgn + tdn+1 , O < t < 1 ,

so that d
dt =Aan'

a

(4.4)
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Substituting these relations into the integrand in (4.3), we are led to an integration of
the type rl exp (ibt)dt where b is a certain constant. Performing all the arithmetic we
ultimately arrive at the expression for J. in (4.4).

5. SUMMARY AND CONCLUSIONS

The Helmholtz integral which occurs in the Kirchhoff Theory of Diffraction
(Eq. (2.1)) has been reduced to a line integral (Eqs. (2.4) and (2.5)). For the case of a
plane wave incident on a flat polygonal plate, the standard far-field approximation to the
scattered field has been further reduced to a form which involves no integrations at all.

From the standpoint of theory these line integral representations of the Helmholtz
integral ate interesting because they show very clearly how the Kirchhoff theory predicts
certain geometrical optics and edge effects, and because they suggest certain ways in which
the Kirchhoff theory might be improved. From the standpoint of practice the line inte-
gral representations have value because they result in great economy of calculation, and
we shall conclude this report with a discussion of this effect.

If N sample points are required to evaluate the line integral of a function over the
boundary of a domain, then N2 points would be required to evaluate the surface (double)
integral of the function over the domain with the same degree of precision. (More
generally, the error in numerically integrating a function over a unit d-dimensional hyper-
cube varies as N-Aid where A is a constant involving bounds on the derivatives of the
fiunction.) For example, consider a rater small scattering surface which has a circum-
ference of about five wavelengths. Typically, ten sample points per wavelength might be
required to numerically evaluate the line integral with an acceptable degree of precision,
so that N = 50 points would be required for the line integral and N2 = 2500 points would
be required for the corresponding Helmholtz (double) integral.

Now in the computer analysis of the doppler Microwave Landing System, the eompu-
tation of the scattered field at a single point will require computing the complicated
interactions between dozens of scattering objects. Moreover, we shall be interested in
seeing how the spectrum of the received signal varies with time as an aircraft approaches
a landing, and this might require the computation of the scattered field at thousands of
points along each aircraft trajectory. Also, the trajectories, the geometrical arrangements
of the scatterers, and the parameters of the system will be varied. Hence, an increase in
the speed of computation by a factor of from 10 to 100 will have a considerable effect
on our ability to use a computer to analyze the performance of the doppler Microwave
Landing System.
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